LIQUID WASTE MANAGEMENT PLAN (LWMP) for the COMOX VALLEY SEWERAGE SYSTEM (CVSS) Joint Technical Advisory Committee and Public Advisory Committee (TACPAC) Meeting #5 February 8, 2019 Finalizing the Long List Options #### Today's Agenda - Quick review of LWMP process - Developing ideas for use of reclaimed water - Review of public feedback on Long List Options - Finalize Long List Options and recommend to CVSC for Conceptual Study - Conveyance - Treatment - Resource Recovery - Technical Update - Understanding Cost Estimates - Conveyance Hydraulics #### LWMP Road Map - CVSS Stage 1 & 2 #### What happens with the Long List? - 1. WSP develops a conceptual study of the long list options (one month) - 2. The TACPAC reviews them at Meeting #6, March 21 - 3. Run long list options through the evaluation system and develop short list - 4. Confirm results reflect committee's input - 5. Short list options for detailed study #### What happens with the Short List? - 1. Recommend the short List to the Comox Valley Sewage Commission (April 16). - 2. TACPAC review of detailed studies at Meeting #7 - 3. The short list options are released for **final** stage of public consultation and input (April/May) - 4. Feedback from Public Consultation and final evaluation of short list options at Meeting #8 - 5. Recommend to CVSC, decision in September #### LWMP Stage 1&2 Report Purpose is to document the process - The goal setting - Long list studies and decisions - Short list studies and decision on preferred option - Simplified financing analysis Target date for completion is end of 2019 #### **LWMP** Report Includes other technical studies, information, recommendations - Population, flow and loads - Regulatory aspects - Environmental aspects (outfall) - Infiltration & inflow - Water conservation - Biosolids management #### **Important Dates** | Date | Activity | | | | | | |--|--|--|--|--|--|--| | March 21 | TACPAC 6 – Evaluate Long List, recommend Short List to CVSC | | | | | | | April/May (TBC) | Online consultation for short list options | | | | | | | Week of May 20 th /27 th (TBC) | TACPAC 7 Review Short List options, public & online feedback, preliminary evaluation | | | | | | | May 29&30 | Public Workshop #4 – review and rank Short List options | | | | | | | June 13 th (TBC) | TACPAC 8 – finalize evaluation to recommend Preferred Option(s), recommend to CVSC | | | | | | | Sep | CVSC to decide on Preferred Options and report back to community | | | | | | | Fall | TACPAC 9 reviewing draft Stage 1&2 LWMP Repo | | | | | | | Fall | TACPAC 10 recommend report to CVSC for submission to Min of Environment. | | | | | | #### How to use Reclaimed Water? ## Closing the Loop on Resource Recovery. Resources are only truly "recovered" when they are actually *reused*. The *engineering* side of resource recovery is relatively straightforward. Making *productive use* of the resources, especially water, is much harder. ## Why is it so hard to use reclaimed water? - Cost of *producing* the water - Cost and logistics of *conveyance* to users - Largest use irrigation is seasonal & weather dependent - The perceived "ick factor" about "recycled sewage" #### How to resolve these issues? - If there is *enough* water being used *and paid for* the costs become "worth it" - *Cannot change* the fact that irrigation is a summer use - Can change the perception of the ick factor through *engagement* - Can change the reality of the ick factor through *appropriate treatment* make the water "fit for purpose". #### Today's challenge - Identify "Users" and "Uses" of reclaimed water If we can find enough of both, it might be "worth it" to do reclaimed water #### What are the "Uses"? The *specific activities* using the water e.g.: - toilet flushing, - landscape irrigation - agricultural irrigation - washing buses - concrete mixing #### Who are the "Users"? The people and/or places that are doing the uses e.g.: - A city park - Hotel - Farm - Airport One User might have multiple Uses. One Place might have multiple Users #### The action statement Use Reclaimed Water at Place by User for Use Example: Use reclaimed water at <u>Airport</u> by <u>Airlines</u> for <u>aircraft washing</u>. ## One Place and/or User having Multiple Uses Use reclaimed water at Airport by Airlines for; - Aircraft washing. - Flushing toilets - Flushing toilets on aircraft - Irrigating the grounds - etc. #### Exercise - Identify the Places ### Use the Red notes examples; - Courtenay downtown - Comox waterfront - K'omoks First Nation - Estuary Farm area - Lazo Beach - Airport - Sandwick - Other Locality—be specific e.g BC Ferry Terminal #### Exercise – Identify the Users Write down a **specific user** –real or potential- of reclaimed water. Concentrate on the ones in your area. Use the yellow notes #### e.g; - XYZ Hotel - dairy farm - hay farm - golf course, - widget factory, - Comox Parks dept. - Residential #### Exercise – Identify the Uses Write down a **specific use** –real or potential- of reclaimed water. Use the green notes e.g. - Irrigating hayfield - Irrigating tomatoes - Washing buses - Washing boats - Augmenting flow to the wetland, creek - Flushing toilets - Processing cowhides to leather #### What to do with all this? - We will compile and sort the Places, Users and Uses - This will be reported back to the TACPAC with the study of reclaimed water - The TACPAC can identify promising combinations that merit further study - Some study may done by others e.g. economic development entity, DND, etc Liquid Waste Management Plan #### LONG LIST PUBLIC CONSULTATION #### Phase 3 Goals | INFORM | CONSULT | INVOLVE | COLLABORATE | EMPOWER | |---|--|---------|-------------|---------| | Provide info
on options
and planning
stage | Obtain
feedback on
alternatives
and decisions | | | | Increasing level of public involvement in decision-making #### **Engagement Summary** #### Phase 3 Info Sessions #### Themes of Feedback Protection of the foreshore High treatment standards Consider the cost Comox 2 opposition #### Next Steps #### Review and rank Shortlisted Options: - February (TBD) Present Long list options to KFN Chief and Council - May 29 + 30 (tentative) Workshops in Courtenay & Comox - May (TBD) Workshop for KFN community - April/May (dates TBC) Online Consultation: Connect CVRD **LWMP Public Consultation Plan** #### **QUESTIONS?** #### Long List Options - Conveyance ## Need to decide the Long List [WSP] #### Long List Options – Treatment ## Need to decide the Long List [WSP] ## Long List Options – Resource Recovery Need to decide the Long List [WSP] #### **Technical Update** - 1. Understanding Cost Estimates - 2. Conveyance Hydraulics [WSP] ## Understanding Engineering Cost Estimates #### **Understanding Engineering Cost Estimates** #### Costing "Catch-22" - Cost estimates are needed to filter/rank options - Insufficient options development to define costs - Addressed through cost estimate Classifications #### **Definitions and Terms** - Class A to D Former Treasury Board of Canada cost classification definition - Class 1 to 5 Association for the Advancement of Cost Engineering (AACE) definitions # **Project Development** #### **Class A to D Estimates** | Table $1-Cost$ Estimate Classification Summary $-Estimate$ Attributes | | | | | | | | | |---|---|---|--|-----------------------|-----------------------|--|--|--| | | Primary Attribute | Secondary Attributes | | | | | | | | Estimate Classification | Project Definition | Intended Purpose | Methodology | Level of
Precision | Preparation
Effort | | | | | Class A Property | High
(completed
working documents) | Compliance with effective project approval (budget) | Measured, priced,
full detail quantities | High | High | | | | | Class B
(Substantive) | Medium
(completed design
development) | Seeking effective project approval | Mainly measured, priced,
detail quantities | Medium | Medium | | | | | Class C (Indicative) | Low
(project plan) | Seeking preliminary project approval | Measured, priced,
parameter quantities,
where possible | Low | Low | | | | | Class D | Lowest
(described solutions) | Screening of various alternative solutions | Various | Lowest | Lowest | | | | # Project Development ### **Class 1 to 5 Estimates** | | Primary Characteristic | Secondary Characteristic | | | | | |-------------------|---|---------------------------------------|--|--|--|--| | ESTIMATE
CLASS | MATURITY LEVEL OF
PROJECT DEFINITION
DELIVERABLES
Expressed as % of complete
definition | END USAGE Typical purpose of estimate | METHODOLOGY Typical estimating method | EXPECTED ACCURACY RANGE Typical variation in low and high ranges [a] | | | | Class 5 | 0% to 2% | Concept
screening | Capacity factored,
parametric models,
judgment, or analogy | L: -20% to -50%
H: +30% to +100% | | | | Class 4 | 1% to 15% | Study or feasibility | | L: -15% to -30%
H: +20% to +50% | | | | Class 3 | 10% to 40% | Budget
authorization or
control | Semi-detailed unit costs
with assembly level line
items | L: -10% to -20%
H: +10% to +30% | | | | Class 2 | 30% to 75% | Control or bid/tender | Detailed unit cost with
forced detailed take-off | L: -5% to -15%
H: +5% to +20% | | | | Class 1 | 65% to 100% | Check estimate or bid/tender | Detailed unit cost with
detailed take-off | L: -3% to -10%
H: +3% to +15% | | | ### **Level of Accuracy** Class 'D' or '5' -20% to +100% variability Class 'C' or '4' -15% to +50% variability Class '3' -10% to +30% Class 'B' or '2' -5% to +20% Class 'A' or '1' ### **Level of Accuracy** ### **Cost Curves** #### **PUMPING - KILOWATT VS COST PER KW** * All Pricing is based on the ENR Construction Cost index of 7723 ### **Detailed Estimates** - Construction estimates typically contain hundreds of line items - Anticipate a ±20% spread even at tendering | Mary | | | | | | | | | | | |--|--|--|---|----------------------|---------------------------------------|--|----------------------|------------------------|--|--| | Column | Dkcipline
Civil-Align | Location
Alignment | Description Foreshore Tie-in at the bottom of Seech St. | QTY | LS. | Unit Cost
5 1769 683 | Labour Factor | Mark-up Factor
1.15 | Purchase/Labor
90.0 | Notes | | Column | Civê-Align
Civê-Align
Civê-Alien | Nignment
Nignment | Pressuraed 70" MH, 6" rise, lid, hatch
Edi spools to FM
Flowmeter 54"00 MH | 1.0 | ES.
ES. | 5 52 000
5 66 0W | 1.15
1.15
1.15 | 1.15
1.15
1.45 | \$7 273.8
\$68 770.0
\$87 291 ii | | | Column | Civê-Align
Civê-Align | Alignment
Alignment | Bolistion Gate Valve Se [*] Ob
Se [*] OD HOPE DR21 (80PSI) | 2.00 | 69 | \$ 115,000
\$ 1,318 | 115 | 1.15 | \$304 175.0
\$4 359 158.4 | Fright aboved
Se*OD DR21(80 ps) - Se* DR21 x 60* - \$1318.46 /estr | | Column | Civê-Align
Civê-Align | Kigsmeet
Kigsmeet | HDPS Pipe Joints
HDPS Pipe Insight | 166.7
82.0 | ea
Loads | \$ 1400
\$ 7450 | 1.15 | 1.15
1.15 | \$208 583.3
\$702 714.9 | fusing and labour from Corix
Fisum Corix (9007 truck load) | | Column | Civê-Align
Civê-Align | Alignment
Alignment | 65mm asphalt pavement
Trenching backfill - coarse aggregate | 12 500.0
5 550.0 | m' | S 45
S 17 | 1.0 | 1.15 | \$646 875.0
\$162 753.8 | 65Means 22 12 16 13 0130
Emerald | | Column | Civê-Align
Civê-Align | Nigoment
Nigoment | Trenching backfill - utility bedding
Backfill material hauling | 21 726.0
27 236.0 | w, | S 52 | 100 | 100 | \$1 661 047.1
\$268 349.2 | KSMAssac 31 23 23: 16
Average 2mile hauling KSMSANS 21 23 23:20 | | A | Civê-Align
Civê-Align | Kigsmeet
Kigsmeet | Treocratig sucusation "Of Supply watermain Comm. mohalt maximum | 500.0
2 500.0 | - 0 | 5 90 | 115 | 115 | \$59 \$12.5
\$136 275 # | Average common earth exclusions robbs Arts \$1,24
Fram Corts
6Channer 29 12 16 12 0120 | | Section Sect | Civil-Align | Nigoment | Supply water partners. Supply waternain Trenching backfill - coarse aggregate Supply waternain Trenchine hardfill - etilis backfile | 210.0 | m' | S 17 | 150 | 115 | 56 158 3
C7 64 5 7 | i merald | | Mary | Civil-Align | Alignment
Alignment | Supply watermain Trenching Excauation Curtis Road Fortis BC 60mm DP Gas line mitiatation for construction | 360.0 | m' | S S | 120 | 100 | \$1979.1
\$ 7,000.00 | | | Section Sect | Ovi-Site | General | Site Clearing and Grubbing for linear work | 22 400.0 | m' | S S | | | \$112 000.0 | | | Section | Ovii-Site
Ovii-Site | General
General | Tree Replacement Well replacement | 4.0 | 69 | \$ 800
\$ 2500 | 12
10 | 1.00
1.00 | \$5,760.0
\$10,000.0 | From Emerald Tender
From Wet Sowet En | | Section | Ovil-Site
Ovil-Site | General
General | 65mm asphalt pavement - Sx17.6m driveway
156mm crushed gravel base | 88.0
52.4 | m² | \$ 45
\$ 17 | 1.0
1.5 | 1.15 | \$ 4554
\$ 1537 | ISMeans 32 12 16 13 0130 | | Section | Ovi-Site
Ovi-Site | General
General | 500mm subbase gravel PS Site Clearing and Grubbing | 900.0 | m' | 3 3 | 1.0 | 1.15 | \$ 1729
\$4500.0 | 65Means 31 11 10.10 0000, assume 20000 for main site plus another 700m2 for staging and laydows. | | The column | Ovil-Site
Ovil-Site | General
General | stropping to Joseph away go depth and stockpile 1op soil
Site Grading
Hawling dirt away from site | 25.0 | LS.
Truckload | 5 120 | 1.0
1.0 | 1.00
1.15
1.00 | \$27,000.0
\$0.0
\$4,200.0 | GMeans 21 24 12 22 24 40
GMeans 21 22 13 0300
GMeans 11 22 22 22 20 0024 | | Marie Mari | Ovil-Site
Ovil-Site | General
General | Imported structural fill including hasting
Deep Eucavation | 0.000 | m² | \$ 50
\$ 50 | 1.0 | 1.00 | \$5,000.0
\$297,500.0 | Undetermined without geotech Undetermined without geotech | | Manual | Ovi-Site
Ovi-Site | General
General | Shallow Excavation
Shoring | 1280.0 | m² | \$ 25
\$ 100 | 1.0 | 1.15 | | | | Column | Ovil-Site
Process-Mechanical | General
Wet Well | Site Dewatering
SLG 1110 | 1.0 | d
ea | \$ 1000
\$ 25000 | 1.0 | 100 | \$60,000.0
\$46,287.5 | Not considered currently due to absence of geatech
Prorated from supplier pricing AVX values | | Section | Process-Mechanical
Process-Mechanical | Wet Well
On Well | LA/UT 1000
400mm TF-1
400mm FF 1121.2.2.4 | 5.0
5.0 | 69 | S 1500
S 5500 | 1.15 | 1.15 | 59 918 8
5 8 3 6 3 6 3 | https://www.wishinimit.com/products/assit/resembuse-assit-agua-wee-transmitter Proceed from enerald https://www.wishinibask.com/c-1297-plus-valves.assit | | Column | Process-Mechanical
Process-Mechanical | Dry Well
Dry Well | CNV 1130,1160
Sewage Pump P-110.1, 2, 3, 4 | 2.0
4.0 | 69 | \$ 160000
\$ 160000 | 1.15
1.15 | 1.15
1.15 | \$2 645.0
\$846-400.0 | https://www.usabluebook.com/t-searchresults.asp://kwdor/2ki/ | | Section Property | Process-Mechanical
Process-Mechanical | Ory Well
Ory Well | CV 1111,2,3,4
PV 120.1,2,3,4 | 4.0
5.0 | 63 | \$ 20,000
\$ \$500 | 1.15 | 1.15 | \$52 900.0
\$36 368.6 | https://www.usablusb.ook.com/c-1297-plug-valves.arps | | Column | Process-Mechanical
Process-Mechanical
Process-Mechanical | | 400 SCH 40 CS material | 15.0
40.0 | | 5 250000 | 100 | 100
100 | \$350,000.0
\$0.0 | tecludes fabrication and installation | | According 14 | Instrumentation
Instrumentation | Ony Well
Ony Well | PC/PT 1150
FE/PT 1160 | 1.0 | ea
ea | \$ 800
\$ 2600 | 1.15 | 115 | \$1 058.0
\$2 428.5 | https://www.instrumert.com/products/40544/resemount-4750w-magnetic-flow-meter | | Angle | Process-Mechanical
Plumbing | Outdoor
Dry Well | | 1.0 | es
LS. | | 1.15 | 1.15 | \$2 645.0
\$ 120,000 | Estimated | | March Marc | Plumbing
Plumbing
Plumbing | Odur Control
Odur Control | oner page VVC
Orain pipe CPVC
FD | 1 | | | | | | | | April | HVAC
HVAC | Ory Well
Odur Control | FOA duct 55
FOA BV 2100 | 1.0 | LS.
ea | \$ 50,000 | 1.90 | 1.00 | \$ 75,000 | | | Column | Instrumentation
HVAC | Odur Control | FOAFF2150 | 1.0 | e3
e3 | | | | | | | Column | HVAC
HVAC
HVAC | Odur Control
Odur Control | FOA MO 2170
FOA MO 2170
FOA Mist Grosse Filter MS 2190 | 1.0
1.0 | 63
63 | | | | | | | Mary | HVAC
HVAC | Odur Control
Electrical | Odour Control System Here-Duall Carbon Advorption
600 mm fan | 1.0 | 63 | \$ 58,880
\$ 100,000 | 1.00
1.90 | 120
100 | \$74 \$31.0
\$150 000.0 | teclude start-up and Operator Training | | Applied Part | HVAC | General
Geotrical | | 1.0 | E.S.
63 | | | | | | | March | HVAC
HVAC | | Some ten | 1.0 | 63
63 | | | | | | | March Marc | HVAC
HVAC | Wet Well
Generator | 1,000 mm fan
600 mm fan | 1.0 | 63 | | | | | | | Description Control | Instrumentation
Instrumentation | Seneral
Seneral | Intrusion Marms
Surge Protection Device | 1.0 | 63 | s 200 | 1.50 | 120 | \$360.0
\$0.0 | | | Teacher Content | Instrumentation Snumeral | General
Mar Wall | Templerature switch
Smoke Detector
Contrate Equipplising Sligh 600 Tell | 5.0 | 63 | 5 40
5 1200 | 150 | 120 | 572.0 | | | March Marc | Structural | Dry well | Contrete Foundation Slab 600 THK | 88.7 | m' | \$ 1200 | 1.90 | 1.15 | | | | March Marc | Structural | Generator | Contrete Foundation Slab 600 THK | \$7.9 | m' | \$ 1200 | 1.90 | 1.15 | S 119 800.34
S 85 014.90 | | | Section Control of the o | Structural | Mechanical | Contrete Foundation Slab 600 THK | 16.6 | m' | \$ 1200 | 1.90 | 1.15 | \$ 34,428.24 | | | Design | Structural | Dry Well 2nd floor | Contrete Foundation Slab 300 THK | 45.4 | m' | \$ 1200 | 1.90 | 1.15 | \$ 93,882.78 | | | Description Company | Structural | Staircase | Contrete Foundation Slab 600 THK | 2.2 | m' | \$ 1201 | 1.90 | 1.15 | \$ 6625.38 | | | March Marc | Structural
Structural | Wet Well
Dry well | Concrete Walls W and E
Concrete Walls N and S | 167.2 | m m | \$ 1500
\$ 1500 | 1.90 | 1.15 | \$ 432,728.33
\$ 74,333.70 | | | Description | Structural | Dry Well 2nd floor | Concrete Walls N and S | 21.7 | - 0, | \$ 1500 | 1.90 | 1.15 | \$ 56,076,30 | | | March Marc | Structural | Odour Control | Concrete Walls N and S | 15.1 | - 0, | \$ 1500 | 1.50 | 1.15 | \$ 29 123.00 | | | Product Prod | | Odour Control
Mechanical | Concrete Walls N | 7.6 | m' | | 150 | 1.15 | \$ 29,561.50 | | | Description Control Contro | Structural | Gectrical Room | Concrete Wall E | 17.2 | m' | S 1500 | 150 | 1.15 | \$ 44,401.50 | | | Product Prod | Structural | Electrical Room | Concrete Walls W | 4.2 | m' | S 1500 | 1.90 | 1.15 | \$ 12 420,00
\$ 10 967,50 | | | Property | Structural | Access Hallway | Concrete Centre Wall | 5.5 | m² | | 1.90 | 1.15 | S 54 283.00
C C2.406.00 | | | The color of | Structural
Structural | | | 25.5
1.0 | m ³ | | 1.90 | 1.15 | \$ 65,925,36
\$ 29,320,00 | Proceed from Granville Island PS | | Additional Control C | Structural
Structural | Ony Well | Sump Walls and Foundation 1.5ms2.5ms2m
Somm RIP Sump Grating | 7.8 | m² | \$ 1500
\$ 207 | 150 | 1.15
1.15 | \$ 20,066.06
\$ 890.88 | | | Additional Control C | Structural
Structural | Ony Well
Ony Well | Trench 290x200 Walls and Foundation
Somm FRP Trench Grating | 1.6
7.4 | m' | S 207
S 207 | 1.00 | 1.15
1.15 | \$ 288.85
\$ 1767.51 | | | Additional Control C | Architectural
Architectural | Roof
Roof | Concrete Roof 300 THK
Green roof | 156.6
522.0 | , , | \$ 1501
\$ 87 | 1.00 | 1.00 | \$ 235 034.09
\$ \$2 221.10 | Approximate for green roof over 2ply sits membrane roofing system | | Additional Control C | Architectural
Architectural | Ground Roor
Ground Roor | External North Wall - Furring Strips Air Gap
External North Wall - Grom Poly Vapour Barrier | 2.92 | m² | 5 2 | 1.00 | 1.15 | \$.
\$ 179.51 | SSMeans 06 16 36, 10 0800
SSMeans 06 16 36, 10 0800 | | Additional Control C | Architectural
Architectural | Ground Roor
Ground Roor | External North Wall - 75 mm Rigid Insulation
External North Wall - 19 mm GIS Plywood painted | 2.82 | m²
m² | S 22
S 29 | 100 | 1.15 | \$ 214436
\$ 191855 | ISMeans 06 22 10.24.0200
ISMeans 07 21 13.10.0440 | | Authors | Architectural
Architectural | Ground Roor
Ground Roor | External South Wall - Furring Strips Air Gap
External South Wall - Gmm Poly Vapour Barrier | 56.4
56.4 | m² | 5 2
5 2 | 1.00 | 1.15 | \$ 194.58
\$ 167.38 | SSMeans 05 16 36. 10 0800
SSMeans 05 15 36. 10 0800 | | Additional Control C | Architectural
Architectural | Ground Roor
Ground Roor | External South Wall - 75 mm Rigid Insulation
External South Wall - 19 mm GIS Plywood painted | 56.4
56.4 | m² | 5 29 | 1.00 | 1.15 | \$ 2,068,56
\$ 1,850,81 | 65Means 06 16 36: 10 0000
65Means 06 22 10 26:0200 | | Activities 1 | Architectural
Architectural | Ground Roor
Ground Door | External Cast Wall - Smm Poly Vapour Barrier Concred Cast Wall - 75 mm Bold Inv | 121.1 | m² | 5 3 | 1.00 | 1.15 | s 359.51 | SSMeans 07 21 13 10.0440
SSMeans 07 (2 0 10.0000 | | Anthonic Section Control Con | Architectural
Architectural | Ground Roor
Ground Roor | External East Wall - 19 mm GS Plywood painted External West Wall - Furring Strips Air Gen | 121.1
126.4 | ar
ar | 5 29
5 3 | 1.00 | 1.15 | \$ 3975.31
\$ 401.75 | SCAMeans 05 16 26, 10 0000
SCAMeans 05 16 26, 10 0000 | | Activities 1 | Architectural
Architectural | Ground Roor
Ground Roor | External West Wall - Emm Poly Vapour Barrier External West Wall - 75 mm Reid ing-Minn | 116.4
116.4 | , , , , , , , , , , , , , , , , , , , | 5 2
5 20 | 100 | 115 | \$ 345.45
\$ 4.000** | SSMeans 04 22 10.24.0300
SSMeans 07 21 13.10.0440 | | Activities 1 | Architectural
Architectural | Ground Roor
Wet Well | External West Wall - 19 mm GIS Plywood painted
External North Wall - Water proof coating | 116.4
76.4 | m' | S 29
S 15 | 1.00 | 115 | S 3819.76
S 1549.44 | SSMeans 06 16 36: 10 0800 | | Activities 1 | Architectural
Architectural | Ory well
Ory well | External North Wall - Furning Strips Air Gap
External North Wall - Emm Poly Vapour Rarrier | 46.2
46.2 | m' | 5 2
5 2 | 100 | 115 | \$ 137.02
\$ 137.02 | 65Means 05 16 36 10 0800
65Means 05 16 36 10 0800 | | Activities 1 | Architectural
Architectural | Ory well
Ory well | External North Wall - 75 mm Rigid insulation
External North Wall - 19 mm GIS Phywood painted | 46.2
46.2 | m' | 5 32
5 29 | 1.00 | 1.15
1.15 | \$ 1693.36
\$ 1515.11 | SSMeans 04 22 10.34.0300
SSMeans 07 21 13:10.0440 | | Activities 1 | Architectural
Architectural | Wet Well
Dry well | External South Wall - Water proof coating
External South Wall - Furning Strips Air Gap | 76.4
46.2 | - | 5 15
5 2 | 120 | 1.15 | \$ 1581.07
\$ 137.02 | SSMeans 06 16 36, 10 0800 | | Activities 1 | Architectural
Architectural | Dry well
Dry well | External South Wall - 6mm Poly Vapour Barrier
External South Wall - 75 mm Rigid Insulation | 46.2
46.2 | m' | 5 32 | 100
100 | 1.15
1.15 | \$ 127.02
\$ 1693.36 | SSMeans 05 15 36: 10 0800
SSMeans 05 15 36: 10 0800 | | According Control Co | Architectural
Architectural | Wet Well | saternar south Wall - 19 mm GIS Plywood painted
External East Wall - Water proof coating | 46.2
200.3 | 8 | 9 29
5 15 | 120 | 115 | 5 1515.11
5 2076.62 | Commence of 22 to 34.0000 | | Activities 1 | Architectural
Architectural | Ony well
Ony well | External Sast Wall - Grons Poly Vapour Barrier | 96.9 | | 5 3 | 100 | 1.15 | \$ 137.02
\$ 287.57 | Onterent Up to an 10 MBD
65Means 07 21 13, 10,0449 | | Activities 1 | Architectural
Architectural | Dry well | Secretal Set Wall - /s mm legal insulation
Secretal Set Wall - 19 mm GS Physiood painted | 96.9 | m' | 5 29
5 | 100 | 1.15 | 3 3553.96
5 3179.86 | CSM-sam: 06 16 36 10 0800 | | Activities 1 | Architectural
Architectural | Dry well | Eaternal West Wall - Furning Strips Air Gap Conserved West Wall - Comm Brok Vision - Province | 96.9 | m, | 5 3 | 1.00 | 115 | \$ 287.57
c | SSMeans 06 16 36 10 0800
SSMeans 06 22 10 34 0300 | | According Company Co | Architectural
Architectural | Ory well
One well | Saternal West Wall - 75 mm Rigid insulation Saternal West Wall - 19 mm GS Physical related | 96.9
96.0 | â | 5 22
5 20 | 1.00 | 115 | 28/57
\$ 3553.96
\$ 3170~ | SSMeans 07 21 13 10.040
SSMeans 07 12 13 10.000 | | April 1997 Apr | Architectural
Architectural | Dry Well 2nd floor
Dry Well 2nd floor | Interior Wall 5 - 19 mm GIS Plywood painted
Interior Wall N - 19 mm GIS Plywood painted | 68.0
22.4 | m' | S 29
S 29 | 100 | 115 | \$ 2231.48
\$ 1062.73 | SSMeans 05 15 26: 10 0800
SSMeans 05 15 26: 10 0800 | | April 1997 Apr | Architectural
Architectural | Odour Control | Interior Wall W - 19 mm GIS Plywood painted
Interior Wall N - 19 mm GIS Plywood painted | 68.0
24.0 | a' | S 29
S 29 | 100 | 115 | \$ 2231.48
\$ 797.50 | SSMeans 05 15 3k, 10 0800
SSMeans 05 15 3k, 10 0800 | | April 1997 Apr | Architectural
Architectural | Wechanical
Wechanical | Interior Wall N - 19 mm GIS Plywood painted
Interior Wall W - 19 mm GIS Plywood painted | 48.0
12.0 | | S 29
S 29 | 100 | 1.15 | \$ 1575.16
\$ 293.79 | SSMeans 06 16 36, 10 0800
SSMeans 06 16 36, 10 0800 | | ADMINISTRATION Consideration Considerati | Architectural
Architectural | Mechanical
Electrical | Interior Wall 5 - 19 mm GIS Plywood painted | 48.0
48.0 | m²
m² | \$ 29
\$ 29 | 100 | 115 | \$ 1575.16
\$ 1575.16 | SSMeans 06 16 36, 10 0800 | | Additional Sect Sept (2017) | Architectural
Architectural | Electrical
Access Hallway | Interior Wall W - 19 mm GS Plywood painted
Interior Wall Centre - 19 mm GS Plywood painted | 64.0
92.2 | m² | 5 29
5 29 | 1.00
1.00 | 1.15 | \$ 2100.21
\$ 3023.98 | SMeans 05 16 36, 10 0800
SMeans 05 16 36, 10 0800 | | Michael Sept Opp Ort | Architectural
Architectural | Access Hallway
Access Hallway | Interior Wall 5 - 19 mm GIS Plywood painted
Interior Wall N - 19 mm GIS Plywood painted | 23.2
23.2 | m² | 5 29
5 29 | 100
100 | 1.15 | \$ 1089.49
\$ 1089.49 | SMeans 05 15 36: 10 0800
SMeans 05 15 36: 10 0800 | | Michael Sept Opp Ort | Architectural
Architectural | Access Hallway
Generator | interior Wall 5 - 19 mm GS Plywood painted
Interior Wall 5 - 19 mm GS Plywood painted | 14.0
42.5 | m²
m² | , 29
5 29 | 1.00 | 1.15 | 5 459.42
5 1393.49 | Conference us to as. 10 0800
65M-ream 05 16 36, 10 0800 | | Additional Sect Sept (2017) | Architectural
Architectural | Venerator
Washroom | Interior Wall N - 19 mm GS Plywood painted
Interior Wall N - 19 mm GS Plywood painted | 22.0
24.0 | m² | 5 29 | 1.00 | 1.15 | 5 1050.11
5 787.58 | Contracts to 14 at, 10 0800
65M-sent 65 15 25 10 0800 | | Michael Sept Opp Ort | Architectural
Architectural | Washroom
Wet Well
General | Interior wans - 19 mm GG Plywood painted Epoxy Costing Inner wall Boof Insulation | 247.4 | m² | 5 3 | 1.00 | 1.15 | 5 787.58
5 1046.91 | Commons to to as to time to the confinence of th | | April Apri | Architectural
Architectural | Onywall 2nd Floor
General | Glaring
Single Doors | 7.0 | LS.
ea | S 20 000
S 424 | 100 | 100
115 | \$ 4094.87 | https://www.cdhdintribustors.com/commercial-steel-do.ors/ | | Account Section Sect | Architectural
Architectural | General
Odour Control | Exterior, weather groof Double Doors
Exterior, weather groof Double Doors | 1.0 | 63 | \$ 2070
\$ 2070 | 100 | 1.15
1.15 | \$ 2 280.50
\$ 2 280.50 | SSMeans 08 11 16 10 0000
SSMeans 08 11 16 10 0000 | | Section General Milkeling Section No. | Architectural
Architectural | General
Seneral
Dry Well 2nd Dry | Interior double doors to Electrical
Stains
Sloor Matrix | 1.0 | ES. | \$ 25000 | 120
100 | 1.15
1.00 | \$ 1184.87
\$ | https://www.cdfdistributors.com/commercial-steel-doors/ | | | Electrical
General | General | NI Building Electrical
Commissioning (2%) | 0.02 | LS.
% | S 2772245
S 15981179 | 100 | 100 | \$ 2772 264.75
\$ 329 627 A4 | | | General Secrety [25] 0.03 S. 5 559172 5 29542346 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | General
General | | Warranty (2%)
Size Office / Admin Costs | 0.02
180.00 | %
day | \$ 15 981 172
\$ 800 | | | \$ 329 623.44
\$ 144 000.00 | | | | General
General | l | Insurance & Bond
Mobilization and Demobilization Costs | 0.02 | %
% | \$ 15 981 172
\$ 15 981 172
Gup **** | Cult Vision | | \$ 329.623.44
\$ 429.435.16 | | | General Mobilization and Demobilization Cents 0.03 N 5 15581127 5 (274 CES L) | 1 | | | | | PSTTax | 7%
TOTAL | | 5 1229 443.43
5 18 792 404 | | ### **Cost Estimating Summary** - Costs derived from - Analogy to other projects - Cost models (i.e. flow vs cost) - Unit rates (costs per meter) - Relative ranking of costs - Comparison between options - Must be refined as the Project advances # Hydraulics in Pumped Systems ### **Hydraulics in Pumped Systems** - Keys Words - Forcemain a pressurized sewage pipe - Gravity main a non-pressurized pipe open to the atmosphere (typically at manholes) - Hydraulic Grade Line (HGL) - Hydraulic grade is the static energy in a pipe system, including the sum of pressure and elevation - Energy Grade - Similar to HGL but includes kinetic energy (velocity). Generally minor in water/wastewater systems. - > In gravity mains: - Pressure = 0 ### **Hydraulics in Pumped Systems** # For meeting # 6... ### Thursday March 21, 9-12 For each component; - Review conceptual studies of Long List options - Evaluate - Settle on the Short List for detailed study ## **Round Table** [Allison] # Thank You!